Entropy of Hidden Markov Processes via Cycle Expansion
نویسنده
چکیده
Hidden Markov Processes (HMP) is one of the basic tools of the modern probabilistic modeling. The characterization of their entropy remains however an open problem. Here the entropy of HMP is calculated via the cycle expansion of the zeta-function, a method adopted from the theory of dynamical systems. For a class of HMP this method produces exact results both for the entropy and the moment-generating function. The latter allows to estimate, via the Chernoff bound, the probabilities of large deviations for the HMP. More generally, the method offers a representation of the moment-generating function and of the entropy via convergent series.
منابع مشابه
Taylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملRelative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملThe Relative Entropy Rate For Two Hidden Markov Processes
The relative entropy rate is a natural and useful measure of distance between two stochastic processes. In this paper we study the relative entropy rate between two Hidden Markov Processes (HMPs), which is of both theoretical and practical importance. We give new results showing analyticity, representation using Lyapunov exponents, and Taylor expansion for the relative entropy rate of two discr...
متن کاملADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes
In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...
متن کاملThe Entropy of a Binary Hidden Markov Process
The entropy of a binary symmetric Hidden Markov Process is calculated as an expansion in the noise parameter ǫ. We map the problem onto a one-dimensional Ising model in a large field of random signs and calculate the expansion coefficients up to second order in ǫ. Using a conjecture we extend the calculation to 11th order and discuss the convergence of the resulting series.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0810.4341 شماره
صفحات -
تاریخ انتشار 2008